633 research outputs found

    Impact of Protein Supplements on Muscle Recovery After Exercise-induced Muscle Soreness

    Get PDF
    The intent of this study was to determine whether nutritional supplements [protein (0.4 g·kg−1) vs. carbohydrate (0.4 g·kg−1) vs. placebo] would affect muscle recovery differently after eccentric exercise-induced muscle soreness in untrained healthy young men (n = 21) aged 20-28 years. During this double-blind randomized block study design, each subject completed three, 3-day trials (separated by = 2 weeks), identical except for treatment, with each subject serving as his own control. Trials began with a bout of right-leg eccentric exercise (Biodex), followed directly by treatment. At 0 (baseline), 24 and 48 hours, data were collected: creatine phosphokinase from pre-exercise blood samples, subjective muscle soreness questions, and strength tests (power, torque, work). ANOVA indicated that exercise caused mild muscle damage, as evidenced by an overall day effect (p = 0.0001) for muscle soreness, with the lowest median values (0-10 scale) on day 1 (0.7), increasing (p = 0.0001) on day 2 (3.2), and remaining elevated on day 3 (3.4). We also noted an overall day effect (p = 0.0001) for creatine phosphokinase, with the lowest median values on day 1 (136 U·L-1), increasing (p = 0.0001) on day 2 (235 U·L-1), and remaining elevated on day 3 (189 U·L-1). ANOVA revealed no significant treatment effect on indicators of soreness or damage during recovery. Our results indicated that protein or carbohydrate supplement after exercise that caused mild muscle damage did not facilitate muscle recovery in adequately nourished, healthy young men

    First Experimental Demonstration of Full-Duplex Optical Communications on a Single Laser Beam

    Get PDF
    We present the results of the first experimental demonstration a novel communications architecture that will be deployed on a Space Shuttle mission in 2003. This architecture can provide a very lightweight, low power consumption, low data rate communications link between the earth and LEO satellites. A unique characteristic of this system is that it provides full-duplex communications on a single beam is presented. The results of first experiments demonstrating this full duplex communications architecture are presented

    Tetranucleotide and Low Microsatellite Instability Are Inversely Associated with the CpG Island Methylator Phenotype in Colorectal Cancer

    Get PDF
    MSH3 gene or protein deficiency or loss-of-function in colorectal cancer can cause a DNA mismatch repair defect known as “elevated microsatellite alterations at selected tetranucleotide repeats” (EMAST). A high percentage of MSI-H tumors exhibit EMAST, while MSI-L is also linked with EMAST. However, the distribution of CpG island methylator phenotype (CIMP) within the EMAST spectrum is not known. Five tetranucleotide repeat and five MSI markers were used to classify 100 sporadic colorectal tumours for EMAST, MSI-H and MSI-L according to the number of unstable markers detected. Promoter methylation was determined using methylation-specific PCR for MSH3, MCC, CDKN2A (p16) and five CIMP marker genes. EMAST was found in 55% of sporadic colorectal carcinomas. Carcinomas with only one positive marker (EMAST-1/5, 26%) were associated with advanced tumour stage, increased lymph node metastasis, MSI-L and lack of CIMP-H. EMAST-2/5 (16%) carcinomas displayed some methylation but MSI was rare. Carcinomas with ≥3 positive EMAST markers (13%) were more likely to have a proximal colon location and be MSI-H and CIMP-H. Our study suggests that EMAST/MSI-L is a valuable prognostic and predictive marker for colorectal carcinomas that do not display the high methylation phenotype CIMP-H

    Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria -assessment of DNA extraction methods and field applicability

    Get PDF
    Background: The need for new malaria surveillance tools and strategies is critical, given improved global malaria control and regional elimination efforts. High quality Plasmodium falciparum DNA can reliably be extracted from malaria rapid diagnostic tests (RDTs). Together with highly sensitive molecular assays, wide scale collection of used RDTs may serve as a modern tool for improved malaria case detection and drug resistance surveillance. However, comparative studies of DNA extraction efficiency from RDTs and the field applicability are lacking. The aim of this study was to compare and evaluate different methods of DNA extraction from RDTs and to test the field applicability for the purpose of molecular epidemiological investigations. Methods: DNA was extracted from two RDT devices (Paracheck-PfW and SD Bioline Malaria Pf/Pan (R)), seeded in vitro with 10-fold dilutions of cultured 3D7 P. falciparum parasites diluted in malaria negative whole blood. The level of P. falciparum detection was determined for each extraction method and RDT device with multiple nested-PCR and real-time PCR assays. The field applicability was tested on 855 paired RDT (Paracheck-Pf) and filter paper (Whatman (R) 3MM) blood samples (734 RDT negative and 121 RDT positive samples) collected from febrile patients in Zanzibar 2010. RDT positive samples were genotyped at four key single nucleotide polymorphisms (SNPs) in pfmdr1 and pfcrt as well as for pfmdr1 copy number, all associated with anti-malarial drug resistance. Results: The P. falciparum DNA detection limit varied with RDT device and extraction method. Chelex-100 extraction performed best for all extraction matrixes. There was no statistically significant difference in PCR detection rates in DNA extracted from RDTs and filter paper field samples. Similarly there were no significant differences in the PCR success rates and genotyping outcomes for the respective SNPs in the 121 RDT positive samples. Conclusions: The results support RDTs as a valuable source of parasite DNA and provide evidence for RDT-DNA extraction for improved malaria case detection, molecular drug resistance surveillance, and RDT quality control.ACT Consortium through Bill and Melinda Gates Foundation; Swedish International Development Agency (SIDA) [SWE 2009-193]; Swedish Civil Contingencies Agency (MSB) [2010-7991]; Swedish Medical Research Council (VR) [2009-3785]; Goljes Foundationinfo:eu-repo/semantics/publishedVersio

    Outcomes of Childhood Aggression in Women

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75752/1/j.1749-6632.1996.tb32553.x.pd

    Lightweight Optical Wavelength Communications without a Laser in Space

    Get PDF
    We will present a model for an earth-to-low-earthorbit optical communications system. The system modeled herein is designed to offer a very lightweight, low power consumption, low data rate communications link from LEO satellites. A novel architecture for a free-space optical communications link is presented and analyzed. For the first time, a method that offers full-duplex communications on a single beam is presented. In addition, a novel data format for free-space optical communications is presented. In this system, both the laser and the downlink receiver are located on the ground. The optical elements located on the spacecraft are a simple uplink receiver and a retromodulator. In fact, the laser transmitter for the system is a semiconductor device. We will present a simple feasibility model for the LOWCAL experiment that provides an estimate of the performance capability and identifies major system tradeoffs. Assuming a laser transmitter power of - 7-dB and a communications data rate of 10-kbps, we expect link margins of 17 dB for the downlink. For the uplink, an SC-FSK format is proposed that is invisible to the downlink and provides a link margin of 20 dB

    Full-Duplex Digital Communication on a Single Laser Beam

    Get PDF
    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end

    Monitoring Cognitive and Emotional Processes Through Pupil and Cardiac Response During Dynamic Versus Logical Task

    Get PDF
    The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error

    Mouse Model of Mutated in Colorectal Cancer Gene Deletion Reveals Novel Pathways in Inflammation and Cancer

    Get PDF
    © 2019 The Authors Background & Aims: The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon. Methods: We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide–treated mouse embryo fibroblasts. Results: Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ–induced guanosine triphosphatase genes, including the homologs of Crohn's disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P =.002). This was not accompanied by hyperactivation of β-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling. Conclusions: Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer
    corecore